الخميس، 16 أبريل 2009

Mineral


A mineral is a naturally occurring solid formed through geological processes that has a characteristic chemical composition, a highly ordered atomic structure, and specific physical properties. A rock, by comparison, is an aggregate of minerals and/or mineraloids, and need not have a specific chemical composition. Minerals range in composition from pure elements and simple salts to very complex silicates with thousands of known forms.The study of minerals is called mineralogy

Mineral definition and classification
To be classified as a true mineral, a substance must be a solid and have a crystalline structure. It must also be a naturally occurring, homogeneous substance with a defined chemical composition. Traditional definitions excluded organically derived material. However, the International Mineralogical Association in 1995 adopted a new definition:
a mineral is an element or chemical compound that is normally crystalline and that has been formed as a result of geological processes
The modern classifications include an organic class - in both the new Dana and the Strunz classification schemes
The chemical composition may vary between end members of a mineral system. For example the plagioclase feldspars comprise a continuous series from sodium and silicon-rich albite (NaAlSi3O8) to calcium and aluminium-rich anorthite (CaAl2Si2O8) with four recognized intermediate compositions between. Mineral-like substances that don't strictly meet the definition are sometimes classified as mineraloids. Other natural-occurring substances are nonminerals. Industrial minerals is a market term and refers to commercially valuable mined materials (see also Minerals and Rocks section below).
A crystal structure is the orderly geometric spatial arrangement of atoms in the internal structure of a mineral. There are 14 basic crystal lattice arrangements of atoms in three dimensions, and these are referred to as the 14 "Bravais lattices". Each of these lattices can be classified into one of the seven crystal systems, and all crystal structures currently recognized fit in one Bravais lattice and one crystal system. This crystal structure is based on regular internal atomic or ionic arrangement that is often expressed in the geometric form that the crystal takes. Even when the mineral grains are too small to see or are irregularly shaped, the underlying crystal structure is always periodic and can be determined by X-ray diffraction. Chemistry and crystal structure together define a mineral. In fact, two or more minerals may have the same chemical composition, but differ in crystal structure (these are known as polymorphs). For example, pyrite and marcasite are both iron sulfide, but their arrangement of atoms differs. Similarly, some minerals have different chemical compositions, but the same crystal structure: for example, halite (made from sodium and chlorine), galena (made from lead and sulfur) and periclase (made from magnesium and oxygen) all share the same cubic crystal structure.
Crystal structure greatly influences a mineral's physical properties. For example, though diamond and graphite have the same composition (both are pure carbon), graphite is very soft, while diamond is the hardest of all known minerals. This happens because the carbon atoms in graphite are arranged into sheets which can slide easily past each other, while the carbon atoms in diamond form a strong, interlocking three-dimensional network.
There are currently more than 4,000 known minerals, according to the International Mineralogical Association, which is responsible for the approval of and naming of new mineral species found in nature. Of these, perhaps 100 can be called "common", 50 are "occasional", and the rest are "rare" to "extremely rare".

Differences between minerals and rocks
A mineral is a naturally occurring solid with a definite chemical composition and a specific crystalline structure. A rock is an aggregate of one or more minerals. (A rock may also include organic remains and mineraloids.) Some rocks are predominantly composed of just one mineral. For example, limestone is a sedimentary rock composed almost entirely of the mineral calcite. Other rocks contain many minerals, and the specific minerals in a rock can vary widely. Some minerals, like quartz, mica or feldspar are common, while others have been found in only four or five locations worldwide. The vast majority of the rocks of the Earth's crust consist of quartz, feldspar, mica, chlorite, kaolin, calcite, epidote, olivine, augite, hornblende, magnetite, hematite, limonite and a few other minerals.[5] Over half of the mineral species known are so rare that they have only been found in a handful of samples, and many are known from only one or two small grains.
Commercially valuable minerals and rocks are referred to as industrial minerals. Rocks from which minerals are mined for economic purposes are referred to as ores (the rocks and minerals that remain, after the desired mineral has been separated from the ore, are referred to as tailings).

Mineral composition of rocks
A main determining factor in the formation of minerals in a rock mass is the chemical
composition of the mass, for a certain mineral can be formed only when the necessary elements are present in the rock. Calcite is most common in limestones, as these consist essentially of calcium carbonate; quartz is common in sandstones and in certain igneous rocks which contain a high percentage of silica.
Other factors are of equal importance in determining the natural association or paragenesis of rock-forming minerals, principally the mode of origin of the rock and the stages through which it has passed in attaining its present condition. Two rock masses may have very much the same bulk composition and yet consist of entirely different assemblages of minerals. The tendency is always for those compounds to be formed which are stable under the conditions under which the rock mass originated. A granite arises by the consolidation of a molten magma at high temperatures and great pressures and its component minerals are those stable under such conditions. Exposed to moisture, carbonic acid and other subaerial agents at the ordinary temperatures of the Earth's surface, some of these original minerals, such as quartz and white mica are relatively stable and remain unaffected; others weather or decay and are replaced by new combinations. The feldspar passes into kaolinite, muscovite and quartz, and any mafic minerals such as pyroxenes, amphiboles or biotite have been present they are often altered to chlorite, epidote, rutile and other substances. These changes are accompanied by disintegration, and the rock falls into a loose, incoherent, earthy mass which may be regarded as a sand or soil. The materials thus formed may be washed away and deposited as sandstone or siltstone. The structure of the original rock is now replaced by a new one; the mineralogical constitution is profoundly altered; but the bulk chemical composition may not be very different. The sedimentary rock may again undergo metamorphism. If penetrated by igneous rocks it may be recrystallized or, if subjected to enormous pressures with heat and movement during mountain building, it may be converted into a gneiss not very different in mineralogical composition though radically different in structure to the granite which was its original state

ليست هناك تعليقات:

إرسال تعليق